Vertex Prime Invariance Of some Path Union Graphs

Mukund V. Bapat ${ }^{1}$

1. Abstract: we investigate path unions of $\mathrm{C}_{3}{ }^{+}, \mathrm{W}_{4}$, and $\mathrm{W}_{4}{ }^{+}$for vertex prime labeling. All different non isomorphic structures of these path unions are shown to be vertex prime. This property of graphs is called as invariance under labeling.
2.Key words: labeling, vertex prime, wheel, path union, crown.

Subject Classification: O5C78

2.Introduction:

The graphs we consider are finite, connected, simple and un- directed. We refer F.Harary[], Dynamic survey of graph labeling [3] for definitions and terminology. Deretsky, Lee, Mitchem Proposed a labeling called as vertex prime labeling of graph[2].A function $f: E(G) \rightarrow\{1,2, . .|E|\}$ is such that for any vertex v the gcd of all labels on edges incident with v is 1 This is true to all vertices with degree at least 2 .The graph that admits vertex prime labeling is called as vertex prime graph. They have shown that all forests, connected graphs, $5 \mathrm{C}_{2 \mathrm{~m}}$, graph with exactly two components one of which is not odd cycle etc are vertex prime. One should refer A Dynamic survey of graph labeling by Joe Gallian [3] to find further work done in this type of labeling.

In this paper we discuss vertex prime labeling of path union graphs. Path union $\mathrm{Pm}(\mathrm{G})$ is obtained by taking m copies of graph G, identify a fixed same vertex from one copy each of G with vertex of P_{m}. If we change the vertex on G to identify with vertex of Pm , we will get non isomorphic pathunion. We have studied non isomorphic path unions of crown of C_{3}, W_{4}, crown W_{4} and shown that they are vertex prime graphs. This is invariance under vertex prime labeling.

4. 4.Preliminaries

4.1 Crown of (p, q) graph G denoted by G^{+}is obtained by attaching a pendent edge to each vertex of G . It has q $+p$ edges and $2 p$ vertices. A double crown G^{++}is obtained by attaching 2 pendent edges at each vertex of G . etc.
4.2 A wheel graph W_{n} is obtained by taking a cycle C_{n} and a new vertex woutside of C_{n}. W is joined to each vertex of Cn by an edge each. It has $2 n$ edges and $n+1$ vertices.
4.3 To obtain a path union of (p, q) graph G we fuse a copy of G at a given fixed vertex of G on every vertex of path Pm. If we change the vertex on graph G used to fix with vertex of Pm we may will get a different structure of path union.

5. Theorems proved:

5.1 Path union of C_{3} crown (i.e. $\mathrm{G}=\mathrm{P}_{\mathrm{m}}\left(\mathrm{c}_{3}{ }^{+}\right)$) is Vertex Prime.

Proof: There are two non-isomorphic structures possible. Structure I in which a degree 3 vertex on C_{3} crown is used for toidentify with vertex of Pm. We define G in terms of vertex set and edge set .
$V(G)=\left\{v_{1}, v_{2}, . . v_{m}\right\} \cup\left\{u_{i, 1}\left(=v_{i}\right), u_{i, 2}, u_{i, 3}, w_{i, 1}, w_{i, 2}, w_{i, 3} / i=1,2, \ldots, m\right\}$
$E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=\right.$
$1,2, \ldots m-1\} \cup\left\{c_{i, 1}=\left(v_{i} u_{i, 2}\right), c_{i, 2}=\left(u_{i, 2} u_{i, 3}\right), c_{i, 3}=\left(u_{i, 3}, v_{i}\right)\right\} \cup\left\{b_{i, 1}=\left(u_{i, 1} w_{i, 1}\right)\right.$,
$\left.b_{i, 2}=\left(u_{i, 2} w_{i, 2}\right), b_{i, 3}=\left(u_{i, 3} w_{i, 3}\right)\right\}$.
We have obtained the path union by identifying vertex w_{i}
of $i^{\text {th }}$ copy of w_{4} with $v_{i}, i=1,2, . ., m$

$\begin{array}{ll}0 & \mathrm{~V}_{\mathrm{m}}\end{array}$

Fig 5.1 ordinary label of $\mathrm{P}_{\mathrm{m}}\left(\mathrm{C}_{3}{ }^{+}\right)$Structure 1

Define a function $f: E(G) \rightarrow\{1,2, . .,|E|\} a s$ follows
$f(e i)=i, i=1,2,, ., m-1 . f\left(c_{i, j}\right)=m-1+(i-1) 6+j, j=1,2,3$
$f\left(b_{i, j}\right)=m+6 i-4+j, j=1,2,3 . i=1,2, \ldots, m$.

Fig 5.2 labeled copy of $\mathrm{P}_{2}\left(\mathrm{c}_{3}{ }^{+}\right)$. Structure 1.
The numbers are edge labels
Define structure $\mathbf{2}$ of G in terms of vertex set and edge set as follows:

$$
V(G)=\left\{v_{1}, v_{2}, . . v_{m}\right\} \cup\left\{u_{i, 1}\left(=v_{i}\right), u_{i, 2}, u_{i}, 3, w_{i, 1}, w_{i, 2}, w_{i, 3} / i=1,2, \ldots, m\right\}
$$

$E(G)=\left\{\quad e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, \ldots m-1\right\} \quad U \quad\left\{c_{i, 1}=\left(u_{i, 1} u_{i, 2}\right), c_{i, 2}=\left(u_{i, 2} u_{i, 3}\right), c_{i, 3}=\left(u_{i, 3}, u_{i, 1}\right)\right\} \quad U \quad\left\{b_{i, 1}=\left(u_{i, 1} w_{i, 1}\right), \quad b_{i, 2} \quad=\right.$ $\left.\left(u_{i, 2} w_{i, 2}\right), b_{i, 3}=\left(u_{i, 3} W_{i, 3}\right)\right\}$.m We have obtained the path union by identifying vertex $w_{i, 1}$ of $i^{\text {th }}$ copy of w_{4} with $v_{i, i}=$ 1,2,..,m.

Fig 5.3 ordinary labeling of $\mathrm{P}_{\mathrm{m}}\left(\mathrm{W}_{4}\right)$

Fig 5.4 labeled copy of $P_{2}\left(W_{4}\right)$.The numbers are edge labels.

Define a function $f: E(G) \rightarrow\{1,2, . .,|E|\}$ as follows

$$
f\left(e_{i}\right)=i, i=1,2, \ldots, ., m-1
$$

$f\left(c_{i, j}\right)=m-1+(i-1) 7+j, j=1,2,3$,
$f\left(b_{i, j}\right)=m+(i-1) 6$ for $j=1$.
$f\left(b_{i, j}\right)=m+4+(i-1) 6$ for $j=2$,
$f\left(b_{i, j}\right)=m+5+(i-1) 6$ for $j=3$.
The graph is vertex prime.
5.2 Path union of wheel graph $\left(W_{n}\right)$ is vertex prime for $n=4$

Proof: We define the path union of wheel graph (W4) i.e $G=P_{m}\left(W_{4}\right)$ as follows.
$V(G)=\left\{w_{i}, v_{1}, v_{2}, \ldots, v_{m}\right\} \cup\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{i, 4}\right\}$
$E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, . ., m-1\right\} \cup\left\{c_{i, j}=\left(u_{i, j} u_{i, j+1}\right), j=1,2, . ., n\right.$ and $n+1$ taken $(\bmod n)$, here $\left.n=4\right) \cup\left\{b i, j=\left(w_{i} u_{i, j}\right) / i=1,2, . ., m\right.$ and $\mathrm{j}=1,2,3,4\}$.

Define a function $f: E(G) \rightarrow\{1,2, \ldots q\}$ as follows:
$f\left(e_{i}\right)=i, \quad i=1,2, . ., m-1$ and $j=1,2,3,4$.

$$
f\left(c_{i, j}\right)=m-1+(i-1) 8+j,
$$

$\mathrm{i}=1,2, . ., \mathrm{m}-1$ and $\mathrm{j}=1,2,3,4$.

$$
f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, i=1,2, . ., m-1 \text { and } j=1,2,3,4
$$

Fig 5.5 ordinary labeling of $\mathrm{Pm}\left(\mathrm{w}_{4}\right)$

Fig 5.6 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}\right)$

Define a function $f: E(G) \rightarrow\{1,2, \ldots,|E|\}$ as follows:

$$
\begin{aligned}
& f\left(e_{i}\right)=i, i=1,2, \ldots, m-1 . \\
& f\left(c_{i, j}\right)=(m-1)+8(i-1)+j, j=1,2,3,4 \\
& f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, j=1,2,3,4 \text {. The graph is vertex prime. }
\end{aligned}
$$

The wheel graph (structure 2) is vertex prime.
We obtain this structure by identifying a 3-degree vertex $u_{i, 1}$ on cycle C_{4} of W_{4} with vertex vi of path Pm.

$$
f(e i)=i, i=1,2, . ., m-1
$$

$f(c i, j)=m-1+8(i-1)+j$ for $i=1,2, \ldots, m$ and $j=1,2,3,4 \quad f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, l=1,2, . . m$ and $j=1,2,3,4$. The resultant graph is vertex prime.

Fig 5.7 Labeled copy of $\mathrm{P}_{2}\left(\mathrm{~W}_{4}\right)$ structure 2

The both of the structures of $\mathrm{P}_{\mathrm{m}}\left(\mathrm{W}_{4}\right)$ are vertex prime graphs .
5.3 Crown of $\mathrm{W}_{4}\left(\mathrm{i}, \mathrm{e} \mathrm{G}=\mathrm{W}_{4}{ }^{+}\right.$(all four non isomorphic structures) is vertex prime graph.

Proof: We define the graph G as: (structure 1)
$V(G)=\left\{w_{i}, v_{1}, v_{2}, \ldots, v_{m}\right\} \cup\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{i, 4}\right\} \cup\left\{w_{i, j} / i=1,2,3, \ldots, m, j=1,2,3,4\right\}$
$E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2, . ., m-1\right\} \cup\left\{c_{i, j}=\left(u_{i . j} u_{i, j+1}\right), j=1,2, . ., n\right.$ and $n+1$ taken $(\bmod n)$, here $\left.\left.n=4\right)\right\} \cup\left\{b_{i, j}=\left(w_{i} u_{i, j}\right) / i=1,2, . ., m\right.$ and $j=1,2,3,4\} \cup\left\{q_{i, j}=\left(u_{i, j} w_{i, j}\right) / j=1,2,3,4\right.$ and $\left.\mathrm{q}_{i, 5}=\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}, 5}\right) \quad\right\}$

Define a function $f: E(G) \rightarrow\{1,2, \ldots . q\}$ as follows:

$$
f\left(e_{i}\right)=i, \quad i=1,2, . . m
$$

$f\left(c_{i, j}\right)=m-1+(i-1) 8+j, \quad j=1,2, . .5, i=1,2, . . m$,

$$
f\left(c_{i, j}\right)=m+8(i-1)+j-1, j=1,2, . .5, i=1,2, . . m,
$$

$f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, i=1,2, . ., m-1$ and $j=1,2,3,4$.

$$
f\left(q_{i, j}\right)=f\left(b_{i, 4}\right)+j /, i=1,2, . . m \text { and } j=1,2, . .5 ;
$$

Fig 5.8 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}{ }^{+}\right)$: structure 1

23
To obtain structure 2 we take a path Pm and m copies of $\mathrm{W}_{4}{ }^{+}$. At each vertex of P_{m} attach a copy of $\mathrm{W}_{4}{ }^{+}$by the pendent vertex at hub w. We define this graph as follows.
$V(G)=\left\{v_{1}, v_{2}, . ., v_{m}\right\} U\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{i, 4}, w_{i}\right\} U\left\{w_{i, 1}, w_{i, 2}, . . w_{i, 5}\right\}$.
$E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / I=1,2,, m-1\right\} \cup\left\{c_{i, 1}=\left(u_{i, 1} u_{i, 2}\right), c_{i, 2}=\left(u_{i, 2} u_{i, 3}\right), c_{i, 3}=\left(u_{i, 3} u_{i, 4}\right), c_{i, 4}=\left(u_{i, 4} u_{i, 1}\right)\right\} \cup\left\{b_{i, j}=\left(w_{i} u_{i, j}\right) / I=1,2, \ldots, m\right.$ and $j=1,2,3,4).\} \cup\left\{q_{i, j}=\left(u_{i, j} w_{i, j}\right) / i=1,2, . ., m, j=1,2,3,4\right.$ and $\left.q_{i, 5}=\left(w_{i} u_{i, 5}\right)\right\}$

Fig 5.9 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}{ }^{+}\right)$: structure 2

Define a function as:

$$
\begin{aligned}
& f: E(G) \rightarrow\{1,2, \ldots,|E|\}, \\
& f\left(e_{i}\right)=i, i=1,2, \ldots, m-1 . \\
& f\left(q_{i, 5}\right)=m+1+13(i-1), i=1,2, \ldots, m . \\
& f\left(b_{i, j}\right)=f\left(q_{i, 5}\right)+j, \\
& f\left(c_{i, j}\right)=f\left(b_{i, 4}\right)+j, j=2,3,4 ., i=1,2, . ., m . \\
& \quad f\left(q_{i, j}\right)=f\left(c_{i, 4}\right)+j, j=1,2,3,4 .
\end{aligned}
$$

The resultant labeling is vertex prime.
We define structure 3 as : $V(G)=\left\{v_{1}, v_{2}, . ., v_{m}\right\} \cup\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, u_{i, 4}, w_{i}\right\} \cup\left\{w_{i, 1}, w_{i, 2}, w_{i, 3}, w_{i, 4}, w_{i, 5}\right\}$.
$E(G)=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2,, m-1\right\} \cup\left\{c_{i, 1}=\left(u_{i, 1} u_{i, 2}\right), c_{i, 2}=\left(u_{i, 2} u_{i, 3}\right), c_{i, 3}=\left(u_{i, 3} u_{i, 4}\right), c_{i, 4}=\left(u_{i, 4} u_{i, 1}\right)\right\} \cup\left\{b_{i, j}=\left(w_{i} u_{i, j}\right) / i=1,2, \ldots, m\right.$, and $j=1,2,3,4.\} \cup\left\{q_{i, j}=\left(u_{i, j} w_{i, j}\right) / i=1,2, . ., m, j=1,2,3,4\right.$ and $\left.q_{i, 5}=\left(w_{i} u_{i, 5}\right)\right\}$.

The $P_{m}\left(W_{4}^{+}\right)$is obtained by taking m copies of $P_{m}\left(W_{4}^{+}\right)$and identifying $q_{i, 1}$ (it is the pendent vertex at point $u_{i, 1}$) with $v_{i}, i=1,2 . . ., m$.

Define a function f as follows:
$f: E(G) \rightarrow\{1,2, \ldots,|E|\}$,
$f\left(e_{i}\right)=i, i=1,2, \ldots, m-1$.
$f\left(q_{i, 1}\right)=m+13(i-1), i=1,2,,, m$.
$f\left(c_{i, j}\right)=f\left(q_{i, 1}\right)+j, i=1,2, . . m, j=1,2,3,4$
$f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, j=2,3,4 ., i=1,2, . ., m$.
$f(q i, j)=f\left(b_{i, 4}\right)+j . \quad j=2,3,4,5$
labeling is vertex prime.

Fig 5.10 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}{ }^{+}\right)$: ordinary labeling structure 3

Fig 5.11 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}{ }^{+}\right)$: structure 4
Structure 4 is defined as follows. $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, . ., \mathrm{v}_{\mathrm{m}}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}, 1,}, \mathrm{u}_{\mathrm{i}, 2}, \mathrm{u}_{\mathrm{i}, 3}, \mathrm{u}_{\mathrm{i}, 4}, \mathrm{w}_{\mathrm{i}}\right\} \cup\left\{\mathrm{w}_{\mathrm{i}, 1}, \mathrm{w}_{\mathrm{i}, 2}, \mathrm{w}_{\mathrm{i}}, 3, \mathrm{w}_{\mathrm{i}, 4}, \mathrm{w}_{\mathrm{i}, 5}\right\}$.
$=\left\{e_{i}=\left(v_{i} v_{i+1}\right) / i=1,2,, m-1\right\} \cup\left\{c_{i, 1}=\left(u_{i, 1} u_{i, 2}\right), c_{i, 2}=\left(u_{i, 2} u_{i, 3}\right), c_{i, 3}=\left(u_{i, 3} u_{i, 4}\right), c_{i, 4}=\left(u_{i, 4} u_{i, 1}\right)\right\} \cup\left\{b_{i, j}=\left(w_{i} u_{i, j}\right) / i=1,2, \ldots, m\right.$, and $j=$ $1,2,3,4.\} \cup\left\{q_{i, j}=\left(u_{i, j} w_{i, j}\right) / i=1,2, . ., m, j=1,2,3,4\right.$ and $\left.q_{i, 5}=\left(w_{i} u_{i, 5}\right)\right\}$.

The $\mathrm{P}_{\mathrm{m}}\left(\mathrm{w}_{4}{ }^{+}\right)$is obtained by attaching vertex $\mathrm{u}_{\mathrm{i}, 1}$ to v_{i}

Fig 5.12 vertex prime labeling of $\mathrm{P}_{2}\left(\mathrm{w}_{4}{ }^{+}\right)$: structure 4
$\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots,|\mathrm{E}|\}$,
$f\left(e_{i}\right)=i, i=1,2, \ldots, m-1$.
$f\left(q_{i, 1}\right)=m+13(i-1), i=1,2,,, m$.
$f\left(c_{i, j}\right)=f\left(q_{i, 1}\right)+j, i=1,2, . . m, j=1,2,3,4$
$f\left(b_{i, j}\right)=f\left(c_{i, 4}\right)+j, j=2,3,4 ., i=1,2, . ., m$.
$f(q i, j)=f\left(b_{i, 4}\right)+j . j=2,3,4,5$
The resultant labeling is vertex prime .
Conclusions: There are different structures of path union $\mathrm{Pm}(\mathrm{G})$ possible. We have shown that for $\mathrm{G}_{\mathrm{C}} \mathrm{C}_{3}{ }^{+}, \mathrm{W}_{4}, \mathrm{C}_{4}{ }^{+}$ All possible non isomorphic structures are vertex prime graphs. It is necessary to investigate this property for other graphs also.

References:

[1] Mukund V. Bapat Ph.D.thesis , university of Mumbai,India,2004.
[2] T. Deretsky, S. M. Lee, and J. Mitchem, On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Vol. 1, J. Alavi, G. Chartrand, O. Oellerman, and A. Schwenk, eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991) 359-369.
[3]Joe Gallian Dynamic survey of graph labeling 2016
[4] Harary,Graph Theory,Narosa publishing ,New Delhi
[5] Yilmaz,Cahit,E-cordial graphs,Ars combina,46,251-256.
[6] Introduction to Graph Theory by D. WEST, Pearson Education Asia.
1 Mukund V. Bapat, Hindale,Devgad,Sindhudurg,Maharashtra India: 416630

